
LoPSTer Class-E PA design sheet

This sheet calculates the components for a class-E PA used on LoPSTer. 

The class-E design equations are from "N O Sokal, IEEE MTT-S Digest, Class E switching mode 
high efficiency PA, Improved Design Equations", 2000.  

Other equations are either from Pozar "Microwave Engineering", or the Circuit Sage website.  The 
conversion from ABCD to S21 is done with reference to Dean Frickley, MTT Feb 1994, 

"Conversion between S and ABCD valid for complex impedances"

Use the Design Procedure section on page 4.  

You then have a choice of four matching networks for Rload<50 ohms (matching 1 to 4) and four 
matching networks for Rload>50 ohms (matching 5 to 8).  The component values, output power & 

harmonics are calculated for each of the circuit topologies.

Chris Haji-Michael

Inputs yellow, outputs green

434MHz design sheet 10dBm,
on the Reference Board

mW
W

1000
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1000
≡

First Calculate C1
C1_total is the total capacitance at C1 and is made up of several capacitance.  It includes the PCB capacitance measured using an impedance analyser on a blank board.  

Here, this is multiplied by 1.4 to allow for extra stray capacitance when components are soldered.   
(refer: chap_12_general_information/CustomerSupport/2008-01-04,Fuba_RX_868MHz.pdf).

 Add to this the LoPSTer output capacitance, C1 and the capacitance for L1.  

Finally, L1 backs-off this capacitance to give an effective C1 (C1_eff) which is used in the calculation for load impedance.  This adjustment comes from Sokal and in his 
equations was added to give C1 which here I have called C1_total.  Because I am starting with C1_total and doing things in reverse his adjustment is substracted to give C1_eff 

used in his equations.

CL1
1

L1 2 π⋅ SRFL1⋅( )2
⋅

:= C1_total Cpcb1 1.4⋅ Clopster+ CL1+ C1+:=
CL1 0.069pF=

C1_total 2.651pF=

Zc
1

2 π⋅ freq⋅ C1_total⋅
:= L1_suggest

4 Zc⋅

2 π⋅ freq⋅
:= C1_eff C1_total

0.7

2 π⋅ freq⋅( )2
L1⋅

−:=
C1_eff 2.128pF=

Zc 138.341ohm=
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CapLopster Voff( ) 0.67pF=

Voff 0.792V=

CapLopster Voff( ) 8627.9
Voff

V






6
⋅ 38102

Voff

V






5
− 69153.1

Voff

V






4
+ 65955.2

Voff

V






3
− 34836.2

Voff

V






2
+ 9660.4

Voff

V






− 1101.28+








pF⋅:=

Voff Vo Vpeak Vo−( ) 0.2⋅+:=Vpeak 2 Vcc_eff⋅:=Vo 0.247V=

The lopster capacitance varies greatly with drain voltage.  The capacitance is important to know at the drain voltage when the transistor switches-on (Voff).  

Calculate the LoPSTer capacitance

Tran_R_proposed VRon( ) 9.961ohm=

Vo 0.247V=Tran_R_proposed VRon( ) 12.4985
VRon

V









2

⋅ 0.136113
VRon

V
⋅− 9.42926+









ohm:=
  From simulations of RON with 

drain-voltage under dc conditions.  This is 
with ACOM=31.

VRon 0.212V=

Vcc_eff 1.488V=
Vo is the saturation voltageVo VLon VRon+:=VRon Tran_R Icc⋅ 2⋅:=VLon ZTran_L Icc⋅ 2⋅:=

ZTran_L 2 π⋅ freq⋅ Tran_L⋅:=Vcc_eff Vcc ESRL1 Icc⋅−:=Icc
Pout_guess

Vcc Eff⋅
:=

Some of this comes from the Sokal paper.  Icc is the average current taken in the drain of the switching transitors and causes a voltage drop across the inductor L1 and the 
transistor R and L.  The voltage across the FET on-resistance is used to clacluate Vo as 2*Icc*Ron.. The factor of 2 is used because the transistor is only switched-on half the 

time.  The voltage drop across inductor L1 is calculated with 1*Icc.

Calculate Vo and ON-resistance
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Tran_R_proposed VON( )

ohm

VON

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

CapLopster VOFF( )

pF

VOFF

Regulator Output Voltage

This is the PA regulator output voltage for 
PAM0 which varies with loadVCC_REG Icc( ) 7.6− 10

7−
⋅

Icc

mA






3
4.8 10

5−
⋅

Icc

mA






2
+ 0.00164

Icc

mA






⋅− 1.5219+








V:=
Icc 10.632mA=

VCC_REG Icc( ) 1.509V=

Duty Cycle

The duty cycle is defined as the off/on ratio 
and this affects the frequency of the series 

tuned circuit

dutyc freq( ) 1.001906 0.0004526
freq

1 10
6

× Hz⋅









+:= freqdutyc freq( )
freq

dutyc freq( ) 1+

2






:= dutyc freq( ) 1.198=

freqdutyc freq( ) 394.844MHz=

0.009 0.011 0.013 0.015 0.017 0.019
1.495

1.499

1.503

1.508

1.512

1.516

1.52
PAM0 Lopster 1

VCC_REG ICC( )

V

ICC
3 .108 5 .108 7 .108 9 .108

3 .108

5 .108

7 .108

9 .108 duty cycle adjusted equivalent frequency

freqdutyc Fr( )

Fr

3



Sokal's equations

Rload here is calculated from equation 5 [Sokal].  This equation is 
modified as the effect of L1 on C1 has already been compensated 

for above and then re-arranged.

Rload
1

34.222 freqdutyc freq( )⋅ C1_eff⋅( )
0.99836

0.91394

QL
+

1.0316

QL
2

−







⋅:=

L2 here is the actual inductor value as if it were a physical 
component and is reduced by Lpcb and LlopsterL2

QL Rload⋅

2 π⋅ freqdutyc freq( )⋅
Lpcb− Llopster−:=

C2
1

2 π⋅ freqdutyc freq( )⋅ Rload⋅( )
1

QL 0.1048−( )⋅ 1.0012
1.0147

QL 1.7979−( )+







⋅:=

Pout_ideal
Vcc_eff Vo−( )2

Rload
0.576801⋅ 1.0012

0.4517

QL
−

0.4024

QL
2

−







⋅:=
Pout_real

Vcc_eff Vo−( )2

Rload 1.365 Tran_R⋅+ ESRL2+
0.576801⋅ 1.0012

0.4517

QL
−

0.4024

QL
2

−







⋅:=

Account for real losses by taking into account the Transistor on-resistance, 
Transistor source inductance and the ESR of L2.  This is modified to include the 
impedance of the source inductor. Otherwise this is directly from the reference.

Efficiency

This is derived from simulations of an ideal amplifier
Efficiency 1

Tran_R_proposed VRon( )
1.36

Rload
Tran_R_proposed VRon( )

1.36
+











−:=

Efficiency 0.848=
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=>

Step 4.  
The on-resistance of the PA transistors and simulations show that 

this changes for ACON and the voltage across the transistors.

Icc 10.632mA=
Tran_R_proposed VRon( ) 9.961ohm= Tran_R 9.961 ohm⋅≡=>

VRon 0.212V=

Step 5. 
From the suggested L1 select the real L1 with its self 

resonance and ESR.  Use a LQW18 high performance 0603 
component series from Murata as these have less loss.

Note: use SRF = 1.1 x spec limit SRF
use ESR = 0.9 x spec limit ESR

L1 180nH≡

L1_suggest 202.928nH= => SRFL1 1.3 1.1• GHz⋅≡

ESRL1 2.2 0.9• ohm⋅≡

Pout_ideal 18.207mW=

Step 6. 
Adjust the Pout_guess until the two values converge. Pout_real 13.6mW= => Pout_guess 13.605mW≡

Design Procedure
freq 434 MHz⋅≡ C1 1pF≡ Llopster 1.8nH≡Step 1. 

Enter these values.  Lpcb is the effective inductance of the pcb 
from the output pin of Lopster to Rload.  Cpcb is on the ouput pin of 

Lopster to gnd. Cpcb2 is between L2 & C2

These are the only PCB parasitics considered in the design.

=>
Lpcb 5nH≡ Cpcb1 0.580pF≡ CapPackage 0.1pF≡

Cpcb2 0.240pF≡ Tran_L 0.6nH≡

Cpcb3 0.280pF≡

Step 2.  
Set VCC

VCC_REG Icc( ) 1.509V= => Vcc 1.509V≡

Step 3.  
Set the lopster capacitance.  Add 100fF for package.

CapLopster Voff( ) CapPackage+ 0.77pF= Clopster 0.77pF≡
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Rload 40.9ohm=
Step 12.

If Rload is < 50 Ohms then goto matching 1 to 4.
If Rload is > 50 Ohms then goto matching 5 to 8

notch_ratio 1.4≡

Step 11
The notch_ratio defines the notch, too low and the notch is too wide, 

too high and the impedance at the wanted frequency changes too 
much.  Suggest 1.2 to 1.6.  Default 1.40

Lar_db 2.4≡FR 1.17≡

Step 10.
These values affect the added LPF.  FR is the ratio of the filter cutoff 

frequency to the output frequency and should be selected to have the 
minimum loss at the required frequency.  Lar_db is the filter ripple.  A 

higher ripple reduces the harmonics, but also increases the losses.

Eff 0.848≡=>Efficiency 0.848=

Step 9.
From the calculated efficiency put Eff.  This has a secondary effect on 

the RON and the voltage across the transistors.

AT THIS POINT REPEAT FROM STEP 1 UNTIL 
CONVERGENCE

Note: use SRF = 1.1 x spec limit SRF
use ESR = 0.9 x spec limit ESR

ESRL2 0.29 0.9• ohm⋅≡
=>L2 50.47nH=

SRFL2 2.7 1.1• GHz⋅≡
Step 8.

The PCB inductance is already substracted and from L2 and so get 
the SRF and ESR assuming LQW15 or LQW18 high performance 
0402.  (This as component may not actually be used so choose data 

for the nearest equivalent)

=> C2 4.699pF=QL 3.474≡
Step 7. 

Adjust QL to get a good value for C2.  QL must be greater than 1.8.

6



Cg3 18.601pF=Lg2 12.232nH=Cg1 18.601pF=

Cg3

g3

50 ohm⋅ 2⋅ π⋅ FR⋅ freq⋅
:=Lg2

50 ohm⋅ g2⋅

2 π⋅ FR⋅ freq⋅
:=Cg1

g1

50 ohm⋅ 2⋅ π⋅ FR⋅ freq⋅
:=

Lg3 46.502nH=Cg2 4.893pF=Lseries_modified_1 46.502 7.822i+ nH=

Lseries_modified_1 Lseries_1 Lg1+:=

This is to add a further LC pole to remove harmonics. This value is the 
cutoff ratio FR * freq and is set for 15%.  This is the ratio of the third 

order Tchebychev peak to the Fc of the filter. 

When Rload>50 ohm, a three stage filter is proposed starting with 
series L.  

when Rload<50 ohm, a three stage filter is proposed starting with cap 
to ground.   

Lg3

50 ohm⋅ g3⋅

2 π⋅ FR⋅ freq⋅
:=Cg2

g2

50 ohm⋅ 2⋅ π⋅ FR⋅ freq⋅
:=Lg1

50 ohm⋅ g1⋅

2 π⋅ FR⋅ freq⋅
:=

Add a further PI section filter if required

Note both the IC and the pcb has inductance which has already been substracted.

Design the Impedance Match to 50 Ohms, when Rload > 50 Ohms

These equations are for Rload greater than 50 ohms, 
with the match following the series LC.  The starting 
component is a capacitor to gnd at Rload, followed 

by a series inductor at 50 ohms.

Qmatch
Rload

50 ohm⋅
1−:= Cgnd_1

Qmatch

2 π⋅ freq⋅ Rload⋅
:= Lseries_1

Qmatch 50⋅ ohm⋅

2 πfreq⋅
:=

Qmatch 0.427i= Cgnd_1 3.825ipF= Lseries_1 7.822inH=

Design the Impedance Match to 50 Ohms, when Rload < 50 Ohms

These equations are for Rload less than 50 ohms.

 The series inductor at Rload will be added to the 
resonant L, the capacitor to gnd is at 50 ohms

Qmatch
50 ohm⋅

Rload
1−:= Lseries_2

Qmatch Rload⋅

2 πfreq⋅
:= Cgnd_2

Qmatch

2 π⋅ freq⋅ 50⋅ ohm⋅
:=

Lseries_modified_2 L2 Lseries_2+:= Qmatch 0.472= Lseries_2 7.075nH= Cgnd_2 3.46pF=
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Make the first capacitor into a notch for the three possible designs.

The capacitor to ground can be replaced by a notch to target the second harmonic which is usually quite high in a class-E amplifier.  The Q of the notch is set by the 
notch_ratio, a low number is very selective and component tolerances may mistune this to have little effect.  A high number is a broader notch with that will give less-peak 

attenuation.  The ratio of 1.4 is about right for most applications.

Convert the capacitor to ground (Cgnd) to a series LC notch to attenuate the second harmonic, when Rload > 50 Ohms

Cgndnew_1
Cgnd_1

notch_ratio
:= Znow_1

1

2 π⋅ freq⋅ Cgnd_1⋅
:= Lnew_1

1

4 π⋅ freq⋅( )2
Cgndnew_1⋅

:= Znew_1
1

2 π⋅ freq⋅ Cgndnew_1⋅
2 π⋅ freq⋅ Lnew_1⋅−:=

Cgndnew_1 2.732ipF= Znow_1 95.872i− ohm=
Cgnd_1 3.825ipF= =>

Lnew_1 12.305i− nH= Znew_1 100.665i− ohm=
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Znew_3 17.454ohm=Lnew_2_g1 2.134nH=
=>Cgnd_2_g1 22.06pF=

Znow_3 16.623ohm=Cgndnew_2_g1 15.757pF=Znew_3
1

2 π⋅ freq⋅ Cgndnew_2_g1⋅
2 π⋅ freq⋅ Lnew_2_g1⋅−:=

Lnew_2_g1
1

4 π⋅ freq⋅( )2
Cgndnew_2_g1⋅

:=Znow_3
1

2 π⋅ freq⋅ Cgnd_2 Cg1+( )⋅
:=Cgndnew_2_g1

Cgnd_2_g1

notch_ratio
:=Cgnd_2_g1 Cgnd_2 Cg1+:=

Convert the capacitor to ground (Cgnd+Cg1) to a series LC notch to attenuate the second harmonic, when Rload < 50 Ohms. 

Znew_2 111.302ohm=Lnew_2 13.605nH=
=>Cgnd_2 3.46pF=

Znow_2 106.002ohm=Cgndnew_2 2.471pF=

Znew_2
1

2 π⋅ freq⋅ Cgndnew_2⋅
2 π⋅ freq⋅ Lnew_2⋅−:=Lnew_2

1

4 π⋅ freq⋅( )2
Cgndnew_2⋅

:=Znow_2
1

2 π⋅ freq⋅ Cgnd_2⋅
:=Cgndnew_2

Cgnd_2

notch_ratio
:=

Convert the capacitor to ground (Cgnd) to a series LC notch to attenuate the second harmonic, when Rload < 50 Ohms
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H7 57.374−=

H4 41.372−=

H6 52.779−=

H3 34.777−=H7 20 log 0.02489
1.0147

7 QL⋅
⋅

1

1
1

7
2

−







0.773
1.7879

7
2

−







QL
−















⋅













⋅:=H6 20 log 0.03604
1.0147

6 QL⋅
⋅

1

1
1

6
2

−







0.773
1.7879

6
2

−







QL
−















⋅













⋅:=

H5 48.497−=

H2 18.777−=

H5 20 log 0.04879
1.0147

5 QL⋅
⋅

1

1
1

5
2

−







0.773
1.7879

5
2

−







QL
−















⋅













⋅:=H4 20 log 0.08737
1.0147

4 QL⋅
⋅

1

1
1

4
2

−







0.773
1.7879

4
2

−







QL
−















⋅













⋅:=

H3 20 log 0.1356
1.0147

3 QL⋅
⋅

1

1
1

3
2

−







0.773
1.7879

3
2

−







QL
−















⋅













⋅:=H2 20 log 0.5172
1.0147

2 QL⋅
⋅

1

1
1

2
2

−







0.773
1.7879

2
2

−







QL
−















⋅













⋅:=

These harmonics (-dBc) are out of the series LC tuned network.  They are calculated according to N O Sokal, F H Raab, Harmonic output of class E PA and load coupling 
network design JSSC Feb 1977.  These equations are modified according to N O Sokal "Improved Design Equations", last paragraph.

Calculate Harmonics out of the class-E tuned network
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T7dB 11.228−=T7dB logS21_TunedT 7 freq⋅( ):=

T6dB 10.547−=T6dB logS21_TunedT 6 freq⋅( ):=

T5dB 9.735−=T5dB logS21_TunedT 5 freq⋅( ):=

T4dB 8.731−=T4dB logS21_TunedT 4 freq⋅( ):=

T3dB 7.405−=T3dB logS21_TunedT 3 freq⋅( ):=

T2dB 5.427−=T2dB logS21_TunedT 2 freq⋅( ):=

T1dB 1.415−=T1dB logS21_TunedT freq( ):=

1 .108 1 .109 1 .1010
20

15

10

5

0

logS21_TunedT f( )

f

logS21_TunedT freq( ) 10 log

2
Rload

2

ohm
2











0.5

TunedT freq( )0 0,

Rload

ohm
⋅ TunedT freq( )0 1,+

Rload
2

ohm
2

TunedT freq( )1 0,⋅+ TunedT freq( )1 1,

Rload

ohm
⋅+

10,



















:=

TunedT freq( ) TunedL freq( ) TunedC freq( )⋅:=

TunedL freq( )
1

0

j 2⋅ π⋅ freq⋅ L2 Lpcb+ Llopster+( )⋅

ohm

ESRL2

ohm
+

1











:=
TunedC freq( )

1

0

1

j 2⋅ π⋅ freq⋅ C2⋅ ohm⋅

1











:=

ESRL2 0.261ohm=Rload 40.9ohm=C2 4.699pF=L2 50.47nH=

The series tuned circuit has a frequency response that we need to measure to compensate for the losses of this circuit in the networks below.  The reason for this complexity 
is that the harmonics are calculated relying on a wideband constant Rload, but the extra filtering and impedance conversion on the output of the tuned circuit presents Rload 

only at the output frequency and not at the harmonic frequencies.

REFERENCE - ideal frequency response of the series tuned circuit
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T1RdB 1.792−=

T1dB 1.415−=

T1RdB logS21_TunedTR freq( ):=

1 .108 1 .109 1 .1010
40

20

0

logS21_TunedTR f( )

logS21_TunedT f( )

f

logS21_TunedTR freq( ) 10 log

2
Rload

2

ohm
2











0.5

TunedTR freq( )0 0,

Rload

ohm
⋅ TunedTR freq( )0 1,+

Rload
2

ohm
2

TunedTR freq( )1 0,⋅+ TunedTR freq( )1 1,

Rload

ohm
⋅+

10,



















:=

TunedTR is the 
S-parameters of the real 

network and is used below

TunedTR freq( ) TA freq( ) TB freq( ) TunedC freq( ):=

TA freq( )

1

0

1

1

j 2⋅ π⋅ freq⋅ L2 Lpcb+ Llopster+( )⋅

ohm

ESRL2

ohm
+









j 2⋅ π⋅ freq⋅ CL2⋅ ohm⋅+









1

















:=
TB freq( )

1

j 2⋅ π⋅ freq⋅ 1.4⋅ Cpcb2⋅ ohm⋅

0

1









:=

CL2 0.057pF=SRFL2 2.97GHz=C2 4.699pF=

Cpcb2 0.24pF=ESRL2 0.261ohm=L2 50.473nH=CL2
1

L2 2 π⋅ SRFL2⋅( )2
⋅

:=

Now calculate the frequency response of the real series tuned circuit.  The effect of L1 does not need to be 
compensated as this is already compensated in the equationns for L1. Cpcb2 is multiplied by 1.4. 

Real response of the series tuned circuit
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10 log
Pout_real

mW






⋅ 11.335=

T1dB 1.415−=logS21_1 freq( ) 1.797−=
logS21_2 freq( ) 10 log

2
Rload 50⋅

ohm









0.5

E freq( )0 0, 50⋅ E freq( )0 1,+
50 Rload⋅

ohm
E freq( )1 0,⋅+ E freq( )1 1,

Rload

ohm
⋅+

10,















:=

logS21_1 freq( ) 10 log

2
Rload 50⋅

ohm









0.5

D freq( )0 0, 50⋅ D freq( )0 1,+
50 Rload⋅

ohm
D freq( )1 0,⋅+ D freq( )1 1,

Rload

ohm
⋅+

10,















:=
E freq( ) TunedTR freq( ) A freq( )⋅ C freq( )⋅:=

D freq( ) TunedTR freq( ) A freq( )⋅ B freq( )⋅:=

C freq( )

1

1

1

j 2⋅ π⋅ freq⋅ Cgndnew_2⋅ ohm⋅

j 2⋅ π⋅ freq⋅ Lnew_2⋅

ohm
+ 1+

0

1















:=B freq( )
1

j 2⋅ π⋅ freq⋅ Cgnd_2⋅ ohm⋅

0

1









:=A freq( )
1

0

j 2⋅ π⋅ freq⋅ Lseries_2⋅

ohm

ESRL2

ohm
+

1











:=

Lnew_2 13.605nH=
Cgnd_2 3.46pF=

Cgndnew_2 2.471pF=
Lseries_2 7.075nH=

Lseries_2 7.075nH=

21

This section subtracts from the harmonics the extra attenuation obtained from the impedance matching network.  Four networks have been designed for Rload<50R, and four 
networks for >50R load, giving eight in total.  Half of these have a second harmonic notch.  Half of these use a second LC filter stage.  This calculation is done using the 

ABCD matrixies which are multiplied together and converted to S21 using standard equations.  The frequency response of all networks are shown below, the notch helps with 
the second harmonic but higher harmonics get through more easiliy.  The more complexity the more loss and as a simple approximation for loss, all the inductors have 1ohm 

in series in the equations.  

Now modify the harmonics with the matching network.    There four matching networks are for Rload < 50 Ohms 

13



H6_1 H6 logS21_1 6freq( )+ T6dB−:= H6_1 63.376−= H6_2 H6 logS21_2 6freq( )+ T6dB−:= H6_2 58.105−=

H7_1 H7 logS21_1 7freq( )+ T7dB−:= H7_1 64.049−= H7_2 H7 logS21_2 7freq( )+ T7dB−:= H7_2 59.636−=

L1 180nH= C1 1pF= Icc 10.632mA= L1 180nH= C1 1pF= Icc 10.632mA=

C2 4.699pF= C2 4.699pF= Cgndnew_2 2.471pF=

Lseries_modified_2 57.548nH= Cgnd_2 3.46pF= Lseries_modified_2 57.548nH= Lnew_2 13.605nH=

Pout_real_1_dBm 10 log
Pout_real

mW






⋅ logS21_1 freq( )+ T1dB−:= Pout_real_2_dBm 10 log
Pout_real

mW






⋅ logS21_2 freq( )+ T1dB−:=

1 .108 1 .109 1 .1010
40

30

20

10

0

logS21_1 f( )

logS21_TunedT f( )

f 1 .108 1 .109 1 .1010
40

30

20

10

0

logS21_2 f( )

logS21_TunedT f( )

f

Pout_real_1_dBm 10.954= Pout_real_2_dBm 10.948=

H2_1 H2 logS21_1 2freq( )+ T2dB−:= H2_1 20.518−= H2_2 H2 logS21_2 2freq( )+ T2dB−:= H2_2 36.282−=

H3_1 H3 logS21_1 3freq( )+ T3dB−:= H3_1 37.951−= H3_2 H3 logS21_2 3freq( )+ T3dB−:= H3_2 36.467−=

H4_1 H4 logS21_1 4freq( )+ T4dB−:= H4_1 46.013−= H4_2 H4 logS21_2 4freq( )+ T4dB−:= H4_2 42.64−=

H5_1 H5 logS21_1 5freq( )+ T5dB−:= H5_1 54.971−= H5_2 H5 logS21_2 5freq( )+ T5dB−:= H5_2 50.447−=

14



K freq( ) TunedTR freq( ) A freq( )⋅ J freq( )⋅ G freq( )⋅ H freq( )⋅:=

I freq( ) TunedTR freq( ) A freq( )⋅ F freq( )⋅ G freq( )⋅ H freq( )⋅:=
H freq( )

1

j 2⋅ π⋅ freq⋅ Cgnd_2_g1⋅ ohm⋅

0

1









:=
G freq( )

1

0

j 2⋅ π⋅ freq⋅ Lg2⋅

ohm
1+

1











:=

J freq( )

1

1

1

j 2⋅ π⋅ freq⋅ Cgndnew_2_g1⋅ ohm⋅

j 2⋅ π⋅ freq⋅ Lnew_2_g1⋅

ohm
+ 1+

0

1















:=F freq( )
1

j 2⋅ π⋅ freq⋅ Cgnd_2_g1⋅ ohm⋅

0

1









:=

Lnew_2_g1 2.134nH=
Cg3 18.601pF=Cgnd_2_g1 22.06pF=

Cg3 18.601pF=
Cgndnew_2_g1 15.757pF=

Lg2 12.232nH=Lseries_2 7.075nH=
Lg2 12.232nH=Lseries_2 7.075nH=

43

________________________________________________________________________________________________________________________________________________
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logS21_3 freq( ) 10 log

2
Rload 50⋅

ohm









0.5

I freq( )0 0, 50⋅ I freq( )0 1,+
50 Rload⋅

ohm
I freq( )1 0,⋅+ I freq( )1 1,

Rload

ohm
⋅+

10,















:=

logS21_4 freq( ) 10 log

2
Rload 50⋅

ohm









0.5

K freq( )0 0, 50⋅ K freq( )0 1,+
50 Rload⋅

ohm
K freq( )1 0,⋅+ K freq( )1 1,

Rload

ohm
⋅+

10,















:=

Pout_real_3_dBm 10 log
Pout_real

mW






⋅ logS21_3 freq( )+ T1dB−:= Pout_real_4_dBm 10 log
Pout_real

mW






⋅ logS21_4 freq( )+ T1dB−:=

1 .108 1 .109 1 .1010
80

60

40

20

0

logS21_3 f( )

logS21_TunedT f( )

f
1 .108 1 .109 1 .1010
60

40

20

0

logS21_4 f( )

logS21_TunedT f( )

f
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H7_3 90.33−= H7_4 H7 logS21_4 7freq( )+ T7dB−:= H7_4 70.624−=

L1 180nH= C1 1pF= Icc 10.632mA=
L1 180nH= C1 1pF= Icc 10.632mA=

C2 4.699pF=
C2 4.699pF=

Lseries_modified_2 57.548nH=
Lseries_modified_2 57.548nH=

Cgnd_2_g1 22.06pF=
Lg2 12.232nH= Cgndnew_2_g1 15.757pF= Lg2 12.232nH=

Cg3 18.601pF= Lnew_2_g1 2.134nH= Cg3 18.601pF=

________________________________________________________________________________________________________________________________________________

Pout_real_3_dBm 10.824= Pout_real_4_dBm 10.237=

H2_3 H2 logS21_3 2freq( )+ T2dB−:= H2_3 34.839−= H2_4 H2 logS21_4 2freq( )+ T2dB−:= H2_4 44.746−=

H3_3 H3 logS21_3 3freq( )+ T3dB−:= H3_3 57.111−= H3_4 H3 logS21_4 3freq( )+ T3dB−:= H3_4 55.272−=

H4_3 H4 logS21_3 4freq( )+ T4dB−:= H4_3 68.101−= H4_4 H4 logS21_4 4freq( )+ T4dB−:= H4_4 62.278−=

H5_3 H5 logS21_3 5freq( )+ T5dB−:= H5_3 79.128−= H5_4 H5 logS21_4 5freq( )+ T5dB−:= H5_4 70.467−=

H6_3 H6 logS21_3 6freq( )+ T6dB−:= H6_3 89.028−= H6_4 H6 logS21_4 6freq( )+ T6dB−:= H6_4 77.411−=

H7_3 H7 logS21_3 7freq( )+ T7dB−:=

17



________________________________________________________________________________________________________________________________________________

These four matching networks are for Rload > 50 Ohms 

5 6
Lseries_1 7.822inH= Lseries_1 7.822inH=

Cgndnew_1 2.732ipF=
Cgnd_1 3.825ipF=

Lnew_1 12.305i− nH=

L freq( )
1

j 2⋅ π⋅ freq⋅ Cgnd_1⋅ ohm⋅

0

1









:= M freq( )
1

0

j 2⋅ π⋅ freq⋅ Lseries_1⋅

ohm
1+

1











:=
O freq( )

1

1

1

j 2⋅ π⋅ freq⋅ Cgndnew_1⋅ ohm⋅

j 2⋅ π⋅ freq⋅ Lnew_1⋅

ohm
+ 1+

0

1















:=

N freq( ) TunedTR freq( ) L freq( )⋅ M freq( )⋅:=

P freq( ) TunedTR freq( ) O freq( )⋅ M freq( )⋅:=

logS21_5 freq( ) 10 log

2
Rload 50⋅

ohm









0.5

N freq( )0 0, 50⋅ N freq( )0 1,+
50 Rload⋅

ohm
N freq( )1 0,⋅+ N freq( )1 1,

Rload

ohm
⋅+

10,















:=

logS21_6 freq( ) 10 log

2
Rload 50⋅

ohm









0.5

P freq( )0 0, 50⋅ P freq( )0 1,+
50 Rload⋅

ohm
P freq( )1 0,⋅+ P freq( )1 1,

Rload

ohm
⋅+

10,















:=

18



H6_5 69.274−= H6_6 H6 logS21_6 6freq( )+ T6dB−:= H6_6 60.006−=

H7_5 H7 logS21_5 7freq( )+ T7dB−:= H7_5 73.691−= H7_6 H7 logS21_6 7freq( )+ T7dB−:= H7_6 63.657−=

L1 180nH= C1 1pF= Icc 10.632mA= L1 180nH= C1 1pF= Icc 10.632mA=

C2 4.699pF= C2 4.699pF= Lseries_1 7.822inH=

L2 50.473nH= Cgnd_1 3.825ipF= Lseries_1 7.822inH= L2 50.473nH= Cgndnew_1 2.732ipF= Lnew_1 12.305i− nH=

Pout_real_5_dBm 10 log
Pout_real

mW






⋅ logS21_5 freq( )+ T1dB−:= Pout_real_6_dBm 10 log
Pout_real

mW






⋅ logS21_6 freq( )+ T1dB−:=

1 .108 1 .109 1 .1010
60

40

20

0

logS21_5 f( )

logS21_TunedT f( )

f
1 .108 1 .109 1 .1010
40

20

0

20

logS21_6 f( )

logS21_TunedT f( )

f

Pout_real_5_dBm 12.961= Pout_real_6_dBm 12.903=

H2_5 H2 logS21_5 3freq( )+ T2dB−:= H2_5 23.171−= H2_6 H2 logS21_6 2freq( )+ T2dB−:= H2_6 28.735−=

H3_5 H3 logS21_5 3freq( )+ T3dB−:= H3_5 37.192−= H3_6 H3 logS21_6 3freq( )+ T3dB−:= H3_6 34.582−=

H4_5 H4 logS21_5 4freq( )+ T4dB−:= H4_5 47.25−= H4_6 H4 logS21_6 4freq( )+ T4dB−:= H4_6 41.631−=

H5_5 H5 logS21_5 5freq( )+ T5dB−:= H5_5 58.354−= H5_6 H5 logS21_6 5freq( )+ T5dB−:= H5_6 50.522−=

H6_5 H6 logS21_5 6freq( )+ T6dB−:=

19



S freq( )
1

0

j 2⋅ π⋅ freq⋅ Lg3⋅

ohm
1+

1











:=R freq( )
1

j 2⋅ π⋅ freq⋅ Cg2⋅ ohm⋅

0

1









:=

T freq( )

1

1

1

j 2⋅ π⋅ freq⋅ Cgndnew_1⋅ ohm⋅

j 2⋅ π⋅ freq⋅ Lnew_1⋅

ohm
+ 1+

0

1















:=
Q freq( )

1

0

j 2⋅ π⋅ freq⋅ Lseries_modified_1⋅

ohm
1+

1











:=
L freq( )

1

j 2⋅ π⋅ freq⋅ Cgnd_1⋅ ohm⋅

0

1









:=

Lnew_1 12.305i− nH=

Cg2 4.893pF=Cgnd_1 3.825ipF=
Cgndnew_1 2.732ipF=

Cg2 4.893pF=

Lg3 46.502nH=Lseries_modified_1 46.502 7.822i+ nH=Lg3 46.502nH=Lseries_modified_1 46.502 7.822i+ nH=

87

_______________________________________________________________________________________________________________________________________________
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U freq( ) TunedTR freq( ) L freq( )⋅ Q freq( )⋅ R freq( )⋅ S freq( )⋅:=

V freq( ) TunedTR freq( ) T freq( )⋅ Q freq( )⋅ R freq( )⋅ S freq( )⋅:=

logS21_7 freq( ) 10 log

2
Rload 50⋅

ohm









0.5

U freq( )0 0, 50⋅ U freq( )0 1,+
50 Rload⋅

ohm
U freq( )1 0,⋅+ U freq( )1 1,

Rload

ohm
⋅+

10,















:=

logS21_8 freq( ) 10 log

2
Rload 50⋅

ohm









0.5

V freq( )0 0, 50⋅ V freq( )0 1,+
50 Rload⋅

ohm
V freq( )1 0,⋅+ V freq( )1 1,

Rload

ohm
⋅+

10,















:=

Pout_real_7_dBm 10 log
Pout_real

mW






⋅ logS21_7 freq( )+ T1dB−:= Pout_real_8_dBm 10 log
Pout_real

mW






⋅ logS21_8 freq( )+ T1dB−:=

1 .108 1 .109 1 .1010
100

50

0

50

logS21_7 f( )

logS21_TunedT f( )

f 1 .108 1 .109 1 .1010
80

60

40

20

0

20

logS21_8 f( )

logS21_TunedT f( )

f
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H7_8 H7 logS21_8 7freq( )+ T7dB−:= H7_8 91.443−=

L1 180nH= C1 1pF= Icc 10.632mA= L1 180nH= C1 1pF= Icc 10.632mA=

C2 4.699pF= C2 4.699pF=
Lseries_modified_1 46.502 7.822i+ nH=

L2 50.473nH= L2 50.473nH=
Cg2 4.893pF= Lg3 46.502nH=

Lseries_modified_1 46.502 7.822i+ nH=
Cgnd_1 3.825ipF= Cgndnew_1 2.732ipF=

Cg2 4.893pF= Lg3 46.502nH=
Lnew_1 12.305i− nH=

________________________________________________________________________________________________________________________________________________

Pout_real_7_dBm 13.341= Pout_real_8_dBm 13.268=

H2_7 H2 logS21_7 2freq( )+ T2dB−:= H2_7 33.504−= H2_8 H2 logS21_8 2freq( )+ T2dB−:= H2_8 50.056−=

H3_7 H3 logS21_7 3freq( )+ T3dB−:= H3_7 57.856−= H3_8 H3 logS21_8 3freq( )+ T3dB−:= H3_8 55.217−=

H4_7 H4 logS21_7 4freq( )+ T4dB−:= H4_7 70.757−= H4_8 H4 logS21_8 4freq( )+ T4dB−:= H4_8 64.318−=

H5_7 H5 logS21_7 5freq( )+ T5dB−:= H5_7 83.784−= H5_8 H5 logS21_8 5freq( )+ T5dB−:= H5_8 75.131−=

H6_7 H6 logS21_7 6freq( )+ T6dB−:= H6_7 96.191−= H6_8 H6 logS21_8 6freq( )+ T6dB−:= H6_8 86.333−=

H7_7 H7 logS21_7 7freq( )+ T7dB−:= H7_7 101.838−=
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LPF Frequency Response and for Chebychev Polynomials 

This subroutine is to calculate the Tchebychev polynomials for a third oder filter that can be used after the tuned network to futher attenuate the harmonincs.  This filter is 
only used if R<50, as it requires three components with the first is merged with the final stage output capacitor.  When R>50, we only have two stages and so the 

butterworth coefficients are used 1.414, 1.414.

N 3:= order of the filter fc freq FR⋅:= flp_hp_sweep_narrow
fc

3

fc

3

fc

100
+, fc 1.15⋅..:=

ε 10

Lar_db

10
1−:=

LA f f1,( ) 10 log 1 ε cos N acos
f

f1









⋅























2
⋅+









⋅ f f1≤if

10 log 1 ε cosh N acosh
f

f1









⋅























2
⋅+

















⋅ f f1>if

:=

0.15 0.18 0.21 0.23 0.26 0.29 0.32 0.35 0.38 0.4 0.43 0.46 0.49 0.52 0.54 0.57 0.6
8

7.2

6.4

5.6

4.8

4

3.2

2.4

1.6

0.8

0

S21

Ideal lowpass frequency response

frequency (GHz)

S2
1 

(d
B

)

1− Lar_db⋅
fc

GHz
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Calculate the g Polynomials 

k 1 N..:= β ln coth
Lar_db

17.37

















:=
γ sinh

β

2 N⋅






:= ak sin
2 k⋅ 1−( ) π⋅

2 N⋅






:= bk γ
2

sin
k π⋅

N












2
+:= gk 0:= g0 1:= gN 1+ 1:=

gk

2 a1⋅

γ
k 1=if

4 ak 1−⋅ ak⋅

bk 1− gk 1−⋅
otherwise

:= g(0) and g(N+1) represent th 
input/output coupling

for odd order filters, these are 1 
representing the generator (and 

equal) load resistance

g1 2.967= g2 0.78= g3 2.967=
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